

NATIONAL SENIOR CERTIFICATE EXAMINATION NOVEMBER 2024

MATHEMATICS: PAPER II

MARKING GUIDELINES

Time: 3 hours 150 marks

These marking guidelines are prepared for use by examiners and sub-examiners, all of whom are required to attend a standardisation meeting to ensure that the guidelines are consistently interpreted and applied in the marking of candidates' scripts.

The IEB will not enter into any discussions or correspondence about any marking guidelines. It is acknowledged that there may be different views about some matters of emphasis or detail in the guidelines. It is also recognised that, without the benefit of attendance at a standardisation meeting, there may be different interpretations of the application of the marking guidelines.

SECTION A

QUESTION 1

(a)	AO = OE(radii)	reason
	Ê₁ = 40°(∠opp = radii)	reason
	D = 140°(opp∠cyclic quad)	reason
	$\hat{F}_1 = 90^{\circ}$ (line from cent bisects chord)	reason
	^	reason
	$A_1 = 50^{\circ} (\tan \perp \text{rad})$	reason
	$\hat{B} = 50^{\circ} (tan chordth)$	
	$\hat{AOE} = 100^{\circ} (\angle @ cent) / (int \angle \Delta)$	
(b)	Construction: radii OA and OC	
	$O\hat{A}C = 90^{\circ} - \hat{A}_1 \text{ (tan } \perp \text{ rad)}$	
	$\hat{OCA} = 90^{\circ} - \hat{A}_1 \ (\angle opp = radii)$	
	$\hat{AOC} = 2\hat{A}_1 \text{ (int } \angle \Delta)$	
	$\hat{B} = \hat{A}_1 (\angle @ cent)$	

PLEASE TURN OVER

QUESTION 2

(a)	$\left(3; -\frac{9}{2}\right)$	y x
(b)	$AM = \sqrt{(-3-3)^2 + (-2-2)^2}$	Sub correct formula answer
	$AM = 2\sqrt{13}$	
(c)	$m_{MA} = \frac{-2-2}{-3-3}$	$m_{\scriptscriptstyle MA}$
		$\tan\theta = \frac{2}{3}$
	$\tan\theta = \frac{2}{3}$	θ = 33,69°
	$\theta = 33,69^{\circ}$	
(d)	$y - \frac{9}{2} = \frac{2}{3}(x+3)$	sub pt gradient
	$\therefore y = \frac{2}{3}x + \frac{13}{2}$	answers in correct form
(e)	PM = 6,5 <i>units</i>	PM
	MR = 6.5 units	MR Correct method used to
	∴PM = MR ∴PARM is a rhombus (adj sides =)	prove a rhombus
	Alternate:	
	$m_{PR} = \frac{\frac{9}{2} + \frac{9}{2}}{-3 - 3}$ $m_{PR} = -\frac{3}{2}$	
	$m_{PR} = -\frac{3}{2}$	
	$\therefore m_{MA} \times m_{PR} = -1$	
	PARM is a rhombus (diagbisect @90°)	

IEB Copyright © 2024

(a)	$x^{2}-2x+1+y^{2}+2y+1=3+1+1$ $(x-1)^{2}+(y+1)^{2}=5$	Completing the square N r
(1.)	$\therefore N(1;-1) \text{ and } r = \sqrt{5} \text{ units}$	
(b)	$x^2 - 2x + y^2 + 2y - 3 = 0$ sub $y = 0$	quadratic equ
	$x^2 - 2x + (0)^2 + 2(0) - 3 = 0$	solutions for x
	$x^2-2x-3=0$	K(-1;0)
	x = 3 or $x = -1$	
	$\therefore K(-1;0)$	
(c)	$m_{\kappa N} = \frac{-1-0}{1+1}$	m _{KN}
	• • •	m_{κ_J}
	$m_{KN} = -\frac{1}{2}$	y = 2x + 2
	$\therefore m_{KJ} = 2$	
	y=2(x+1)	
	$\therefore y = 2x + 2$	
(d)	$tan\theta = 2$	$tan\theta = 2$
	$\theta = 63,43^{\circ}$	θ
	$\therefore \hat{L} = 63,43^{\circ}$ (tan chord th)	L and reason

(a)	M = 90° (∠in half circle)	M reason
(b)	In \triangle LMN and \triangle LPM (1) $\hat{L} = \hat{L}(common)$ (2) $\hat{M} = \hat{P}_1(both = 90^\circ)$ (3) $\hat{M}_1 = \hat{N}(3rd \angle)$ $\therefore \triangle$ LMN \triangle LPM(\triangle AAA)	$\hat{L} = \hat{L}(common)$ $\hat{M} = \hat{P}_1$ AAA
(c)	$\frac{LM}{LP} = \frac{MN}{PM} = \frac{LN}{LM}$ $LM^2 = LP \times LN$ $4^2 = LP \times 8$ $LP = 2$	$\frac{LM}{LP} = \frac{MN}{PM} = \frac{LN}{LM}$ $4^2 = LP \times 8$ $LP = 2$
	Alternate: $4^2 = LP \times 8(\perp \text{from right } \angle \text{'d vertex})$ LP = 2	$4^2 = LP \times 8$ \perp from right \angle 'd vertex LP

(a)	b = 2	b
(b)	180°	answer
(c)	-180 -98 90 180	cos shape consistent amp correct x and y cuts
(d)	2	answer
(e)	$\theta = 90^{\circ} + k180^{\circ}$	90°
		<i>k</i> 180°
(f)(1)	$x \in [-90^\circ; 90^\circ]$	-90°;90°
(f)(2)	$x \in (0^{\circ}; 90^{\circ}) \cup (90^{\circ}; 180^{\circ})$	(0°;90°)
		(90°;180°)
(f)(3)	$\therefore x \in (0^\circ; 180^\circ)$	interval brackets
(g)	$y = -2\cos(x-45^\circ) + 2$	-45°
		+2

(a)(1)	$= \sin(50^{\circ}-10^{\circ})$	$(50^{\circ}-10^{\circ})/\sin 40^{\circ}$
	= sin40°	answer
	$=\frac{\rho}{4}$	
(a)(2)	$=\cos 2(20^{\circ})$	Adj on diagram
	$= \cos 40^{\circ}$	cos 40°
	$= \frac{\sqrt{16 - \rho^2}}{4}$ \frac{\frac{40^\circ}{16 - \rho^2}}{}	answer
(a)(3)	40 2	answer
(4)(0)	$=\frac{\sqrt{16-p^2}}{}$	anowor
	ρ	
(b)	A	Diagram
	10	Cos rule
	60° C	answer
	B 12	
	$AC^2 = 10^2 + 12^2 - 2(10)(12)\cos 60^\circ$	
	$AC = 2\sqrt{31}$ units	

(b) $(\bar{x};\bar{y}) = (4,5;26,8)$ $x \\ \bar{y} \\ y - \text{int} \\ \text{line through } (\bar{x};\bar{y}) \\ \text{and } y - \text{int}$ $x \\ \bar{y} \\ y - \text{int} \\ \text{line through } (\bar{x};\bar{y}) \\ \text{and } y - \text{int}$ $x \\ \bar{y} \\ y - \text{int} \\ \text{line through } (\bar{x};\bar{y}) \\ \text{and } y - \text{int}$ $x \\ \bar{y} \\ y - \text{int} \\ \text{line through } (\bar{x};\bar{y}) \\ \text{and } y - \text{int}$ $x \\ \bar{y} \\ y - \text{int} \\ \text{line through } (\bar{x};\bar{y}) \\ \text{and } y - \text{int}$ $x \\ \bar{y} \\ y - \text{int} \\ \text{line through } (\bar{x};\bar{y}) \\ \text{and } y - \text{int}$ $x \\ \bar{y} \\ y - \text{int} \\ \text{line through } (\bar{x};\bar{y}) \\ \text{answer in thousands of rands}$ $x \\ \bar{y} \\ y - \text{int} \\ \text{line through } (\bar{x};\bar{y}) \\ \text{answer in thousands of rands}$ $x \\ \bar{y} \\ \bar{y} \\ - $	(a)	y = 13,98 + 2,85x	A B
(c) R25 000 Indicate on graph answer in thousands of rands (d) $r = 0.58$ answer (e) $\frac{45}{45}$	(b)	50 45 40 35 30 25 20 15	\overline{y} $y - \text{int}$ line through $(\overline{x}; \overline{y})$
(e) 50 Circled on diagram 50 50 50 50 50 50 50 50 50 50 50 50 50	(c)	R25 000 50 45 40 35 30 25 20 15 10 5	answer in thousands of
45	(d)	r = 0.58	
	(e)	45 - 40 - 35 - 30 - 25 - 20 - 15 - 10 - 5	Circled on diagram
	(f)		answer

SECTION B

QUESTION 8

(a)	$D\hat{FE} = 90^{\circ} \left(\angle \ln \frac{1}{2} \text{ circle} \right)$	DFE = 90°
		$\angle \ln \frac{1}{2}$ circle
	$\therefore \hat{DFE} = \hat{DEG} (both = 90^\circ)$	_
-	∴EG FC(converse corres∠'s)	DFE = DÊG
(b)	In ∆ABC and ∆DFC	$\hat{C}_1 = \hat{D}$
	(1) $\hat{C}_1 = \hat{D} (tan chordth)$	tan chordth
	(2) $\hat{C}_2 = \hat{A}(\tan \cosh \sinh \theta)$	$\hat{C}_2 = \hat{A}$
	(3) $AC = CD$ (given)	tan chordth
	$\therefore \triangle ABC \equiv \triangle CFD(AAS)$	AC = CD
	∴ AB = CF = 10 units	AAS
	Alternate:	
	In ∆ABC and ∆DFC	
	$(1) \hat{B} = 90^{\circ} \left(\angle \ln \frac{1}{2} \text{ circle} \right)$	
	$\therefore \hat{B} = \hat{F} \left(both = 90^{\circ} \right)$	
	(2) $\hat{C}_2 = \hat{A}(\tan \cosh \sinh)$	
	(3) $AC = CD$ (given)	
	$\therefore \triangle ABC \equiv \triangle CFD(AAS)$	
	∴ AB = CF = 10 units	
(b)	3(10) = 5DE	DE = 6
	DE = 6	FD = 24
	$FD^2 = 26^2 - 10^2 \text{ (pythag)}$	
	FD = 24	
	∴FE = 24 – 6 = 18	
(d)	$\frac{\text{CG}}{26} = \frac{18}{24} (\text{prop th EG FC})$	$\frac{\text{CG}}{\text{CG}} = \frac{18}{100}$
	26 24 (Free at 25 iii 5) ∴ CG = 19,5 units	26 24 prop th EG FC
	00 – 19,0 umio	CG = 19,5 units
<u> </u>		-,

(a)	Sides in proportion	reason
(b)	$\hat{D}_1 = \hat{A}()$	$\hat{D}_1 = \hat{A}$
	∴ DF is a tangent to the circle at D (converse tan chord th)	converse tan chord th
(c)	$\hat{C} = \hat{F}()$	Ĉ = Ê
	∴ GCFD is a cyclic quad(converse ∠'s same seg)	converse ∠'s same seg

QUESTION 11

(a)	$C \hat{A} B = 90^{\circ} - \theta (int \angle \Delta)$ $\frac{AC}{\sin(180^{\circ} - \theta)} = \frac{10}{\sin(90^{\circ} - \theta)}$ $AC = \frac{10 \sin \theta}{\sin(100^{\circ} - \theta)}$	$\frac{90^{\circ} - \theta}{AC}$ $\frac{AC}{\sin(180^{\circ} - \theta)}$ $\frac{10}{\cos(180^{\circ} - \theta)}$
	$AC = \frac{10 \cos \theta}{\cos \theta}$ $AC = 10 \tan \theta$	$\frac{\sin(90^{\circ} - \theta)}{\frac{10\sin\theta}{\cos\theta}}$
(b)	$tan\theta = \frac{DC}{AC}$ $tan\theta = \frac{15}{10 tan\theta}$ $tan^2 \theta = \frac{3}{2}$ $tan\theta = \pm 1,22 \dots$ $\theta = 50,77^{\circ}$	tan ratio sub of AC $\tan^2 \theta = \frac{3}{2}$ $\theta = 50,77^{\circ}$

•
x – 1
cos x
$(x-1)(\cos x + 1)$
$(\cos x - 1)$
x – 1
cos x
K
:1
° + <i>k</i> 180°
x−1 or
$n^2 x$ or
$-\sin^2 x$
cos x
$\sin x = 0$
90° + <i>k</i> 360°
: 1
° + <i>k</i> 180°

(a)	E(9;10)	E(9;10)
	$\therefore b = 10$	<i>b</i> = 10
	a = 9 - 25 a = -16	<i>a</i> = −16
	$\therefore C(-16;10)$	
(b)	$\hat{D} = 90^{\circ} (\tan \perp \text{rad})$	$\hat{D} = 90^{\circ} (tan \perp rad)$
	CD = 15(pythag)	CD = 15
	$(x+16)^2 + (y-10)^2 = 225$	$(x+16)^2 + (y-10)^2 = 225$
(c)	$r \in (0;10) \text{ or } r \in (40;\infty)$	$r \in (0;10)$
		$r \in (40; \infty)$

(a)
$$M_{AB}(8;4)$$
 $m_{AB} = 1$
 $\therefore m_{PQ} = -1$
 $PQ: y - 4 = -1(x - 8)$
 $y = -x + 12$
 $MP^2 = (x - 8)^2 + (y - 4)^2$ sub MP and $y = -x + 12$
 $(6;6)$
 $MP^2 = (x - 8)^2 + (-x + 12 - 4)^2$
 $(2\sqrt{2})^2 = (x - 8)^2 + (-x + 8)^2$
 $8 = x^2 - 16x + 64 + x^2 - 16x + 64$
 $0 = 2x^2 - 32x + 120$
 $x = 10 \text{ or } x = 6$
 $\therefore (6;6) \text{ and } (10;2)$

Alternate:

 $M_{AB}(8;4)$
 $M_{AB}(8;4)$
 $M_{AB} = 1$
 $\therefore m_{PQ} = -1$
 $\therefore \frac{\Delta y}{\Delta x} = \frac{t}{t}$
 $t^2 + t^2 = (2\sqrt{2})^2$
 $t = 2$
 $(6;6) \text{ and } (10;2)$

(b) $V = \pi r^2 H + \frac{4}{3}\pi r^3$
 $V = \pi(2\sqrt{2})^2 \times 8\sqrt{2} + \frac{4}{3}\pi(2\sqrt{2})^3$
 $V = 379,13 \text{ units}^3$
 $V = 379,13 \text{ units}^3$
 $V = 379,13 \text{ units}^3$
 $V = 379,13 \text{ units}^3$

Total: 150 marks