

NATIONAL SENIOR CERTIFICATE EXAMINATION MAY 2025

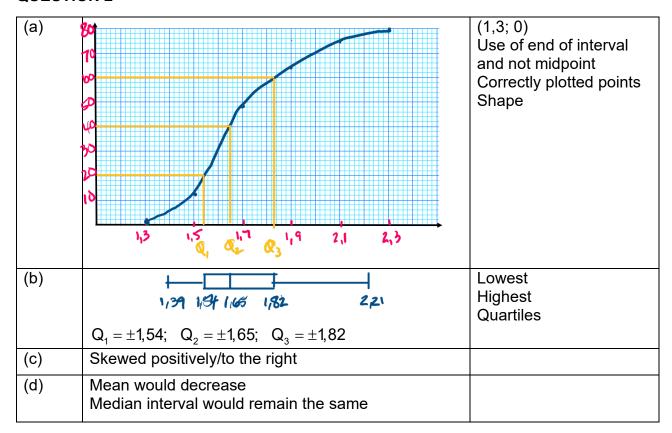
MATHEMATICS: PAPER II

MARKING GUIDELINES

Time: 3 hours 150 marks

These marking guidelines are prepared for use by examiners and sub-examiners, all of whom are required to attend a standardisation meeting to ensure that the guidelines are consistently interpreted and applied in the marking of candidates' scripts.

The IEB will not enter into any discussions or correspondence about any marking guidelines. It is acknowledged that there may be different views about some matters of emphasis or detail in the guidelines. It is also recognised that, without the benefit of attendance at a standardisation meeting, there may be different interpretations of the application of the marking guidelines.


NOTE:

- If a candidate answers the question more than once, only mark the first attempt.
- Continued accuracy applies to all questions.

SECTION A

QUESTION 1

(a)	y = 11,713 – 1,118x	a-value b-value rounding
(b)	$\overline{x} = 5$	Line
	$\overline{y} = 6,1$	(5; 6,1)
	14 † y	Y-intercept
	12	
	10	
	8	
	Point: (5; 6,1)	
	4	
	×	
(c)	r = -0.946 very strong negative correlation	r-value
(0)	e, o to the transfer of the tr	comment
(1)		
(d)	y = 11,713 - 1,118(15)	Value Comment
	=-5,0	Comment
	Extrapolation/cannot have negative number of people	

(a)	$(+, 0)^2 + (-4)^2 = 20$	Substitution
()	$(t+8)^2 + (-4)^2 = 20$	Simplification
	$\left(t+8\right)^2=4$	Answer
	$t+8=\pm 2$	
	$t = -6$ of $t \neq -12$	
(b) (1)	A(-8;0)	Co-ordinates of center
	$m_{AB} = \frac{0+4}{-8+6}$	Gradient
(0)	= -2	Inclination
(2)	tan A = -2	Answer
()	CÂB = 63,4°	0 1: 1
(c)	$m_{BD} = \frac{1}{2}$	Gradient Substitution
	_	Answer
	$y = \frac{1}{2}x + c$	
	-4 = -3 + c	
	$y = \frac{1}{2}x - 1$	
(d)	E(20; 0)	Coordinate
	$0 = \frac{1}{2}x - 1$	x-intercept Answer
	$0 = \frac{1}{2}x - 1$	Allswei
	x = 2	
	CE = 18 units	
(e)	area $\triangle ABC = \frac{1}{2} \cdot AC \cdot AB \sin A$	Sin-rule (or other) Substitution
	2	AC = 10
	$=\frac{1}{2}.10.\sqrt{20}\sin 63.4^{\circ}$	Answer
	=19,993	
	= 20 units ²	
	OR	Area for triangle (or
	$BC = \sqrt{(2+6)^2 + 4^2}$	other) Substitution
	$=\sqrt{80}$	BC = $\sqrt{80}$
	area $\triangle ABC = \frac{1}{2}.b.h$	Answer
	_	
	$=\frac{1}{2}.\sqrt{80}.\sqrt{20}$	
	= 20 units ²	

(a)(1)	$\hat{B}_1 = x$	OA = OB	Statement and reason
(a)(2)	$\hat{O}_1 = 180^{\circ} - 2x$	∠s in ∆	Statement and reason
(a)(3)	$\hat{D}_1 = 90^{\circ} - x$	∠ at centre = 2 x ∠ at circ.	Statement Reason
(a)(4)	$\hat{C} = 180^{\circ} - 2x$	opp ∠s cyclic quad	Statement Reason
(b)(1)	D ₁ = 55°	tan-chrd theorem	Statement Reason
(b)(2)	$\hat{C}_2 = 80^{\circ}$ $\hat{A} = 100^{\circ}$	∠s in ∆ opp ∠s in cyclic quad	Statement Statement Reason

QUESTION 5

(a)(1)	$\triangle ADE \equiv \triangle PQR$ SAS	
(a)(2)	$\hat{D} = \hat{Q}$ $\hat{B} = \hat{D}$ $DE \parallel BC \qquad corr \angle s \text{ equal}$ $\frac{AB}{AD} = \frac{AC}{AE} \qquad \text{line parallel one side } \Delta$ $\frac{AB}{PQ} = \frac{AC}{PR} \qquad \Delta s \equiv$	Equal angles Parallel lines Reason Ratio Reason
(b)	In $\triangle DBC$ and $\triangle EFC$: $\hat{B} = \hat{F} = 90^{\circ} \qquad \text{given}$ $\hat{C} \text{ is common}$ $\triangle DBC \triangle EFC \qquad 3 \angle s$ $\therefore \frac{BC}{DC} = \frac{FC}{EC}$ $BC \cdot EC = FC \cdot DC$	Right angles Common angle Similarity Statement

(a)	$sin(x-30^{\circ}) = sin(90^{\circ}-2x)$ $x-30^{\circ} = 90^{\circ}-2x+k\cdot360^{\circ}$ $3x = 120^{\circ}+k\cdot360^{\circ}$ $x = 40^{\circ}+k\cdot120; k \in \mathbb{Z}$ or $x-30^{\circ} = 180^{\circ}-(90^{\circ}-2x)+k\cdot360^{\circ}$ $-x = 120^{\circ}+k\cdot360^{\circ}$ $x = -120^{\circ}+k\cdot360^{\circ}; k \in \mathbb{Z}$ $x = -120^{\circ}; -80^{\circ}; 40^{\circ}$	Co-ratio First solution and period Second solution and period Final answer
(b)	(-180 -150 -120 -90 -60 -30 -120 -90 -60 -30 -120 -90 -60 -30 -120 -90 -60 -30 -120 -90 -60 -30 -120 -120 -90 -60 -30 -120 -120 -120 -120 -120 -120 -120 -12	End-points y-intercepts Shape x-intercepts
(c)	$x \in (-180^{\circ}; -150^{\circ}) \cup (-135^{\circ}; -45^{\circ}) \cup (30^{\circ}; 45^{\circ})$	Intervals with brackets
	End points of intervals excluded	

SECTION B

QUESTION 7

(a)	$\frac{\sin(90^{\circ} - \beta) \cdot \sin(-\beta)}{}$	sin(90°-β)
	$\cos(360^{\circ} - \beta) \cdot \tan(-180^{\circ} - \beta)$	$sin(-\beta)$
	$=\frac{\cos\beta\cdot-\sin\beta}{\cos\beta}$	cos(360°-β)
	$-\frac{1}{\cos\beta\cdot-\tan(\beta)}$	tan(-180° - β)
	$= \sin\beta \div - \frac{\sin\beta}{\cos\beta}$	$\tan\beta = \frac{\sin\beta}{\cos\beta}$
	$=-\cos\beta$	Answer ✓
(b)(1)	$LHS = \frac{\cos A + \sin A}{\cos A - \sin A} - \frac{\cos A - \sin A}{\cos A + \sin A}$ $= \frac{(\cos A + \sin A)^2 - (\cos A - \sin A)^2}{(\cos A + \sin A)(\cos A - \sin A)}$ $= \frac{\sin^2 A + \cos^2 A + 2\sin A \cos A - (\sin^2 A + \cos^2 A - 2\sin A \cos A)}{\cos^2 A - \sin^2 A}$ $= \frac{1 + 2\sin A \cos A - (1 - 2\sin A \cos A)}{\cos^2 A - \sin^2 A}$ $= \frac{4\sin A \cos A}{\cos 2A}$ $= \frac{2\sin 2A}{\cos 2A}$ $= RHS$	LCD Numerator Expansion sin ² A + cos ² A Cos2A Sin2A
(b)(2)	$\cos A = \pm \sin A$ $\tan A = \pm 1$ Denominators $\hat{A} = \pm 45^{\circ} + k \cdot 180^{\circ}; \ k \in \mathbb{Z}$	Denominator = 0 tan A Answer

(a)(1)	$\cos 2\theta = 2\cos^2 \theta - 1$ $\frac{3}{5} = 2\cos^2 \theta - 1$ $\frac{8}{5} = 2\cos^2 \theta$ $\frac{4}{5} = \cos^2 \theta$ $\cos \theta = +\frac{2}{\sqrt{5}}$	Substitution Simplification Answer Discard negative
(c)	$\cos \hat{A} = \frac{\sqrt{3}}{2}$ $\cos \hat{B} = \frac{2}{3}$ $\cos \hat{C} = \cos \left[180 - (A + B)\right]$ $= -\cos(A + B)$ $\cos \hat{C} = \cos \left[A + B\right]$	y = 1 Quadrant 1 $y = \sqrt{5}$ Quadrant 1 180 - (A + B) Reduction Expansion Answer
	$= -\left[\cos A \cos B - \sin A \sin B\right]$ $= -\left[\frac{\sqrt{3}}{2} \cdot \frac{2}{3} - \frac{1}{2} \cdot \frac{\sqrt{5}}{3}\right]$ $= -\frac{2\sqrt{3} - \sqrt{5}}{6}$	

Ô = 2θ	∠ at centre = 2 ∠ at circ	Angle Ô
$\hat{XZO} = 90^{\circ} - \theta$	∠s in ∆	Reason Angle XŽO
$\frac{\sin 2\theta}{\sin \theta} = \frac{\sin (90^{\circ} - \theta)}{\sin \theta}$		Sine-rule
p r		Expansion
$\frac{2\sin\theta\cos\theta}{\cos\theta} = \frac{\cos\theta}{\cos\theta}$		Co-ratio
p r		
$2\sin\theta = \frac{p}{r}$		
$\sin\theta = \frac{p}{2r}$		

QUESTION 10

Join BC		Construction
SÂC = AĈS	tan-chrd theorem	Statement-reason
BĈS = ABŜ	tan-chrd theorem	Statement-reason Statement
$\hat{CBS} + \hat{SCB} = 60^{\circ}$	∠s in ∆BCS	Statement
$\hat{A} = 60^\circ$	∠s in ∆ABC	

QUESTION 11

P(0; 1) and Q(5; 4)	Centre of circles
$m_{PQ} = \frac{4-1}{5-0}$	Gradient PQ Gradient DC
$=\frac{3}{5}$	Coordinate of D Substitution
5	Equation
CD \perp PQ; line from centre bisects chord	
$m_{DC} = -\frac{5}{3}$	
$D(5;1)$ rad \perp tan	
$y = -\frac{5}{3}x + c$	
$1 = -\frac{5}{3}(5) + c$	
$y = -\frac{5}{3}x + \frac{28}{3}$	

IEB Copyright © 2025

(a)	$(x+3)^{2} + (y-2)^{2} = 12 + 9 + 4$ $= 25$ $C(-3; 2)$ $y^{2} - 4y = 12$ $y^{2} - 4y - 12 = 0$ $(y-6)(y+2) = 0$ $y = 6 \text{ at A}$ $m_{AC} = \frac{6-2}{0+3}$ $= \frac{4}{3}$ $m_{AD} = -\frac{3}{4}$	Complete square Centre y-intercept answer gradient radius gradient tangent inclination answer
	tan $\hat{ADO} = -\frac{3}{4}$ $\hat{ADO} = 36.9^{\circ}$ $\theta = 143.1^{\circ}$ ext \angle of \triangle	
(b)	A(0; 6) we need D $y = -\frac{3}{4}x + 6$ $0 = -\frac{3}{4}x + 6$ $x = 8$ $D(8; 0)$ $x^{2} + (y - 6)^{2} = r^{2}$ $64 + 36 = r^{2}$ $r = 10$ $x^{2} + (y - 6)^{2} = 100$ To touch internally the distance between centres must be the difference of the radii. $CA = R - r$ $= 10 - 5$ $= 5$ and $CA = R - r$ $= 10 - 5$ $= 5$ and	Let y = 0 D (8;0) $x^{2} + (y-6)^{2} = r^{2}$ r = 10 equation of circle R - r = 5 CA = 5 CA = R - r
	CA is the radius; therefore, the circles touch internally	

(a)	In ∆ RQT and RQS
	(1) $\hat{R} = \hat{R}$; common
	(2) RQS = QTR; tangent / chord theorem
	∴ ∆RQT ∆RSQ(AAA)
	. <u>RQ</u> _ <u>RT</u>
	$\therefore RQ^2 = RS \times RT$
(b)	In ∆ RUP and RPT
	(1) R is common
	(2) RPT = RÛP;tangent / chord theorem
	∴ ΔRUP ΔRPT(AAA)
	RU RP
	$\therefore \overline{RP} = \overline{RT}$
	$\therefore RP^2 = RU \times RT$
	But PQ = QR
	$\therefore (2RQ)^2 = RU \times RT$
	$\therefore 4RQ^2 = RU \times RT$
	but $RQ^2 = RS \times RT$
	$\therefore 4(RS \times RT) = RU \times RT$
	∴ 4RS = RU

Total: 150 marks